

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-PL-21594-04-01 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 26.01.2023 Ausstellungsdatum: 26.01.2023

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-PL-21594-04-00.

Inhaber der Teil-Akkreditierungsurkunde:

Evonik Operations GmbH
Product Line Analytik
Paul-Baumann-Straße 1, 45764 Marl

Das Prüflaboratorium erfüllt die Mindestanforderungen gemäß DIN EN ISO/IEC 17025:2018 und gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, um die nachfolgend aufgeführten Konformitätsbewertungstätigkeiten durchzuführen.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Prüflaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Prüfungen in den Bereichen:

physikalische, physikalisch-chemische und chemische Untersuchungen von anorganischen und organischen Chemikalien, Pharmazeutika, Kosmetika, Kautschuk, Kunststoffen, Kunststoffadditiven, Fasern, Folien, Farbstoffen, Pigmenten, Emulgatoren, Additiven, Tensiden, Wachsen und Harzen, Keramik, Kohle, Mineralien, sonstigen Feststoffen, Halbfabrikaten, Halbzeugen, Konsumgütern, Bedarfsgegenständen, (Druck-) Gasen, Brenngasen, Metallen, Legierungen, Loten, Katalysatoren und Abgaskatalysatoren, Halbleitern, keramischen Farben, Rußen, Kieselsäuren, pyrogenen Oxiden, metallischen Werkstoffen und Oberflächen

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite Seite 1 von 12

Innerhalb der mit ** gekennzeichneten Prüfbereiche ist dem Prüflaboratorium, ohne dass es einer vorherigen Information und Zustimmung der Deutschen Akkreditierungsstelle GmbH bedarf, die Modifizierung sowie Weiter- und Neuentwicklung von Prüfverfahren gestattet. Die aufgeführten Prüfverfahren sind beispielhaft.

Das Laboratorium verfügt über eine aktuelle Liste aller Prüfverfahren im flexiblen Akkreditierungsbereich.

Gültig für die Standorte:

Rodenbacher Chaussee 4, 63457 Hanau Paul-Baumann-Straße 1, 45764 Marl

Die Prüfverfahren sind mit den nachfolgend aufgeführten Symbolen der Standorte gekenn-zeichnet, an denen sie durchgeführt werden:

M = Marl, W = Hanau-Wolfgang

- 1 Physikalische, physikalisch-chemische und chemische Untersuchungen von Inhaltsstoffen und Kontaminanten in chemischen Roh-, Zwischen- und Endprodukten
- 1.1 Strukturanalytische Untersuchungen organischer Verbindungen mittels NMR-Spektroskopie **

SOP 0558 Version 09 06.02.2020	¹³ C-NMR-Spektroskopie Aufnahme und Auswertung von Kernresonanzspektren	M
SOP 0565 Version 07 06.02.2020	¹ H-NMR-Spektroskopie Aufnahme und Auswertung von Kernresonanzspektren	М
SOP 0565 Methode 008, Version 03 11.05.2016	NMR-spektroskopische Untersuchung von (Produktname), (Produktname) und (Produktname) der Spritze A	M
SOP 0565 Methode 015e, Version 05 28.01.2019	Determination of modification degree of (API) hydrogels (product name) by means of ¹ H NMR spectroscopy	M
SOP 0565 Methode 021e, Version 01 28.02.2019	Assay determination of EDTA and citric acid in (API) by means of ¹ H NMR spectroscopy	M
SOP 1999, Version 01 16.05.2017	Method of weight percent ethylene oxide of (product name) by NMR (USP-NF- and EP-modified)	M

SOP NMR-024, Version 03 11.11.2016	Gehaltsbestimmung mittels NMR-Spektroskopie	M/W
SOP NMR-024 Methode 014, Version 04 22.05.2017	Identitätsprüfung und Gehaltsbestimmung von (Produktname) mit Hilfe der ¹ H-NMR-Spekroskopie	W
SOP NMR 1995, Version 01 08.09.2015	Determination of percentage α 1,6-branching in (product name) by $^{\rm 13}\text{C-NMR}$ spectroscopy	М
SOP NMR-021 Version 02 09.07.2015	Auswertung von NMR-Spektren	M/W
SOP NMR-021 E Method 024 E, Version 01 13.08.2013	Identity and impurity profile of phosphoramidites by ³¹ P-NMR spectroscopy	W

1.2 Photometrische Untersuchungen von organischen und anorganischen Verbindungen mittels UV/VIS und Kolorimetrie **

SOP 0190 Version 03 30.07.2004	Messung von UV/VIS-Spektren	M
QK TM 25109e/07	Determination of total phosphorous content in (product name) and (product name)	M
Ph.Eur. 0204 (10.0)	Sucrose: Sulfites	М
Ph.Eur. 30209 (10.0)	Rubber closures for containers for aqueous parenteral preparations for powders and for freeze dried powders: Absorbance	М

1.3 Untersuchungen bzw. Produkt-Identifizierungen mittels Infrarotspektroskopie (FT-IR) **

AN-SOP 0188, Version 05 07.12.2012	Messung von IR-Spektren	M
AN-SOP 0188 Methode 04, Version 01 27.02.2019	Messung von IR-Spektren Identitätsprüfung von (Produktname), (Produktname), (Produktname) und (Produktname) mittels IR Spektroskopie	M

SOP 0188 Methode 003, Version 04 09.05.2016	Identitätsprüfung von (Produktname), (Produktname) und (Produktname) Spritze B mittels FT-IR	M
SOP 2059, Version 02 08.04.2019	Determination of the degree of siliconization of rubber parts by means of IR spectroscopy	М
SOP IR-011, Version 06 17.10.2018	Identitätsprüfung mittels IR-Spektroskopie	W
SOP IR-011 Methode 054, Version 01 29.02.2012	Identitätsprüfung mittels IR-Spektroskopie Bestimmung der Identität von (Produktname) mit Hilfe der ATR-IR-Spektroskopie	W
SOP IR-011 Methode 055, Version 02 19.12.2019	Identitätsprüfung mittels IR-Spektroskopie Bestimmung der Identität von (Produktname)	W
SOP IR-011 Methode 080, Version 01 29.11.2012	Identitätsprüfung mittels IR-Spektroskopie Bestimmung der Identität und Vergleich von Chromatografiegelen des Typs (Produktname) mittels ATR-IR-Spektroskopie	W
SOP IR-011 Methode 081, Version 01 21.12.2018	Identitätsprüfung mittels IR-Spektroskopie Bestimmung der Identität und Vergleich von Chromatografiegelen des Typs (Produktname) mittels ATR-IR-Spektroskopie	W

1.4 Flüssigchromatographische Untersuchungen von Inhaltstoffen und Kontaminanten mittels massenspektrometrischer Detektion (HPLC-ESI-MS-, APCI-MS-Kopplungstechniken) **

SOP LCMS-016 Version 05 18.07.2019	Determination of degradation products in (API) tablets of (company name)	W
SOP LCMS-020 Version 01 02.06.2015	Bestimmung von Peak E in Tryptophan	W
SOP LCMS-023 Version 01 05.10.2011	Mass spectrometric limit test for genotoxic 4-fluoroaniline in (product name) from (company name)	W
SOP LCMS-028 Version 01 27.05.2014	Determination of impurity E in (product name) from (company name) by HPLC-MS	W
SOP LCMS-034 Version 01 18.01.2017	Mass spectrometric limit test for bromoacetic acid in (product name)	W

Gültig ab: 26.01.2023 Ausstellungsdatum: 26.01.2023

Seite 4 von 12

SOP LCMS-041 Version 03	Quantifizierung von Histamin in (API) mittels LC-MS	W
02.12.2019		

1.5 Gaschromatographische Untersuchungen von organischen und anorganischen Substanzen (GC-FID, HSGC-FID, GC-WLD) **

AN-SOP 1946, Version 01 12.12.2013	Bestimmung der Restlösemittel Ethylenglykol, Essigsäure und 2-Propanol in (Produktname) und (Produktname) als Limit Test	М
SOP 2060e, Version 02 01.02.2019	Determination of monomer lactide in (product name) and in (product name) using gas chromatography	M
SOP 2077, Version 01 22.02.2019	Bestimmung von Ethylenoxid, Propylenoxid und 1,4-Dioxan in (Produktname) mittels HS-GC auf Basis der USP-Monographie Poloxamer (USP 41/NF 36)	М
SOP 2107e, Version 01 29.08.2019	Limit test of residual solvents ethanol and 2-propanol in (API) based on USP General Chapter <467> for water-insoluble substances Procedure A	М
Ph.Eur. 0428 (10.0)	Polysorbate 80: Composition of fatty acids	M
Ph.Eur. 1497 (10.0)	Castor oil, hydrogenated: Composition of fatty acids	M
AN-SOP 1665 Methode 03, Version 02 08.07.2008	Bestimmung des Gehaltes und der Identität von Stickstoff	M
AN-SOP 1665 Methode 08, Version 01 26.03.2015	Bestimmung von Argon, Sauerstoff und Stickstoff in Luft und Gasgemischen unter Verwendung von Kapillar- Trennsäulen	М
AN-SOP 1599 Methode 01, Version 03 21.04.2016	Untersuchung von Gasproben auf Spuren von Kohlenmonoxid mit einer Spezifikation ≤ 10 ml/m3	М
AN-SOP 1599 Methode 02, Version 01 26.04.2019	Untersuchung von Gasproben auf Spuren von Kohlenmonoxid, Methan und Kohlendioxid	М
SOP 1993, Version 01 26.03.2015	Gehaltsbestimmung von Rein-Stickstoff nach USP	М

SOP 2020, Version 02 14.04.2020	Bestimmung des Gehaltes an Sickstoff in Rein-Stickstoff mittels Gaschromatographie nach EP 1247	M
• • • • • • • • • • • • • • • • • • • •	ische Untersuchungen von organischen Substanzen mittels C-RID, HPLC-UVD, HPLC-FLD, HPLC-ELSD) **	
SOP 1366_e Version 02 06.02.2014	Determination of the assay of lactose monohydrate by means of HPLC	M
SOP 1368_e Version 04 06.02.2014	Determination of the related substances in lactose monohydrate by means of HPLC	М
SOP 1968, Version 01 16.08.2016	Bestimmung der Related Compounds in Aspartic Acid nach USP 38 2 nd Supplement	М
SOP 2062e, Version 01 01.02.2018	Determination of the related compounds in Methionine according to USP 40 NF 35s1	М
SOP HPLC-1082 Version 06 28.09.2017	HPLC-Methode zur simultanen Bestimmung von (API)- und (API)verunreinigungen in dotiertem Knochenzement	W
USP 41 NF 36	Glycine: Related compounds	М
1.7 Ionenchromatographis (IC-LFD, IC-AMP, IC-UV	sche Untersuchungen organischer und anorganischer Substanz ') **	en
SOP 2104, Version 03 16.09.2019	Bestimmung von Chlorid, Nitrit und Nitrat in (Produktname) mittels Ionenchromatographie	М
SOP STT-ASA-001 Methode ASA-0008 Version 09 25.07.2019	Durchführung einer Aminosäureanalyse mit dem Aminosäureanalysator S433 der Firma Sykam: Bestimmung von "Ninhydrin-positiven Substanzen und Ammonium" gemäß Ph.Eur. und von "physiologischen Aminosäuren" mit der Methode "ASA- 0008_Ver09_Lithium"	W
Ph.Eur. 1562 (10.0)	Silica dental type: Chlorides, sulfates	М
Ph.Eur. 0910 (10.0)	Histidine hydrochloride monohydrate: Ninhydrin-positive substances	W

1.8 Gaschromatographische Untersuchungen organischer Verbindungen mit massenspektrometrischer Detektion (GC-MS, Thermodesorption-GC-MS, HSGC-MS) **

AN-SOP 1842-e Version 02 10.08.2010	Methyl methane sulphonate and ethyl methane sulphonate in (product name) by GC/MS	М
AY-001892 Version 4 19.10.2021	Determination of benzene and toluene in adhesive layer of (product name) and (product name) by headspace-GCMS	M
SOP GCMS-021 Version 02 19.10.2017	Determination of hexachlorbenzene in (product name) and (product name) samples by GCMS	W
SOP GCMS-022 Version 01 27.03.2018	Quantifizierung von cyclischen Polymethylsiloxanen (Si_4 – Si_6) in pyrogenen und gefällten Kieselsäuren mittels HR-GC/MS Kopplung	W
SOP GCMS-024 Version 02 25.05.2020	GC-HRMS determination of specific nitrosamines in dichlormethane extracts from aqueous hydrogen peroxide solutions	W

1.9 Titration anorganischer und organischer Verbindungen mittels potentiometrischer, coulometrischer und visueller Endpunktbestimmung **

SOP AOAN-036 Version 01 02.12.2019	Bestimmung von Fluorid (E552) in (Produktname) mittels ionenselektiver Elektrode	W
SOP EA1-079 Version 03 21.03.2019	Quantitative Bestimmung von Chlorid in synthetischen Kieselsäuren durch argentometrische Titration nach Lösen in Natronlauge	W
Ph.Eur. 20512 (10.0)	Water: Semi-micro determination	М
Ph.Eur. 20532 (10.0)	Water: Micro determination	М

1.10 Untersuchung physikalischer Kennzahlen anorganischer und organischer Substanzen mittels Konventionsverfahren **

SOP 1566	Determination of the inherent viscosity of (product name)	M
Methode 01e, Version 01		
30.01.2018		

SOP 1566 Methode 02e, Version 01 23.01.2019	Determination of the inherent viscosity of (product name)	М
SOP 1825 Version 01 03.02.2009	Bestimmung des Brechungsindexes von transparenten Flüssigkeiten mittels Abbé-Refraktometer	M
SOP 1879 Version 01 26.05.2011	Bestimmung des Schmelzverhaltens (Schmelzpunkt und Schmelzbereich) mittels Kapillarrohr-Verfahren analog DIN EN ISO 3146, Verfahren A mit dem Schmelzpunkt- Gerät M-565 (Fa. Büchi)	М
SOP STO-051 Methode 005, Version 01 17.01.2014	Bestimmung rheologischer Eigenschaften mit dem Rheometer MCR 101 Bestimmung der komplexen Viskosität von (Produktname)	W
1.11 Bestimmung von Elemen (FI-AAS, CV-AAS, GF-AAS	ten mittels Atomabsorptionsspektroskopie) **	
SOP AAS-051 Version 01 22.11.2019	Bestimmung von Blei (Pb) in Zinksulfat-7-Hydrat mittels Graphitrohr-AAS nach Lösen für (Firmenname)	W
SOP AAS-052 Version 01 22.11.2019	Bestimmung von Blei (Pb) in Zinkchlorid mittels Graphitrohr-AAS nach Lösen für (Firmenname)	W
1.12 Bestimmung von Elemen	ten mittels Plasma-Atomspektrometrie (ICP-OES) **	
SOP ICPO-055 Version 02 20.04.2018	Quantitative Bestimmung von Schwefel in (Produktname) mittels ICP-OES nach Druckaufschluss (TW) "Projekt (Produktname)"	W
SOP ICPO-059 Version 01 20.04.2018	Quantitative Bestimmung von Pd und Cu in (Produktname) nach Druckaufschluss (Ultraclave (UC)) mittels ICP-OES für (Firmenname)	W
SOP ICPO-060 Version 02 15.05.2019	Grenzwertprüfung von Ni und Pd in (API) mittels ICP-OES nach Druckaufschluss (UC) für die Firma (Firmenname)	W
SOP ICPO-062 Version 02 03.01.2020	Quantitative Bestimmung von Pd in (Produktname) nach Druckaufschluss (Ultraclave (UC)) mittels ICPOES für die Firma (Firmenname)	W

1.13 Bestimmung von Elementen mittels Plasma-Massenspektrometrie (ICP-MS, GD-MS) **

SOP GDMS-036 Version 07 09.01.2020	Halbquantitative Übersichtsanalyse von Ag, In, Cd mittels GDMS	W
SOP GDMS-049 Version 06 13.08.2019	Halbquantitative Übersichts- und Multielement- analyse von flachen Cu- und Cu-Legierungen am Finnigan ELEMENT GD	W
SOP GDMS-052 Version 03 09.03.2017	Halbquantitative Übersichts- und Multielement-analyse von flachen Ni- und Ni-Legierungen am Finnigan ELEMENT GD	W
SOP SPEA-102 Version 02 07.02.2014	Quantitative Bestimmung von Pb, und Ni in verschiedenen Arten von Zucker mittels ICP-MS nach Lösen	W
SOP SPEA-141 Version 01 11.07.2019	Bestimmung von As, Cd, Pb, und Hg mittels ICP-MS nach Druckaufschluss (MW) und Hg mittels DMA in (Produktname) und (Produktname) (SiO₂ Gehalt (Hydratform) ≥ 94%) für (Firmenname)	W
SOP SPEA-142 Version 01 14.11.2019	Bestimmung von As, Cd, Pb, und Hg (E 551) mittels ICP-MS nach Lösen und Hg mittels DMA in (Produktname) (pyrogene Kieselsäure; SiO₂ Gehalt (nach dem Glühen) ≥ 99%) für (Firmenname)	W
SOP EA1-047 Version 03 17.10.2019	Bestimmung von H, N, C, F, Cl, B, Al_2O_3 -Gehalt und Verunreinigungen in Al_2O_3	W
1.14 Elementaranalyse nach	Verbrennung (Detektionsprinzip: IR, WLD, IC-LFD) **	
SOP 1875 Methode 3, Version 05 09.09.2019	Bestimmung von CHNS C, H, N-Bestimmung in (Produktname) mittels Elementaranalyse (vario-EL-cube)	M
SOP 1875 Methode 6, Version 01 29.08.2019	Bestimmung von CHNS N-Bestimmung in (Produktname) mittels Elementaranalyse (Elementar vario-EL-cube)	M
SOP AOAN-029 Methode EA-0011, Edition 03 03.08.2018	Determination of C, H, N, S by the elemental analyzer Eurovector EA3000 Parameters for the elemental analysis of (API)	W

Gültig ab: 26.01.2023 Ausstellungsdatum: 26.01.2023

Seite 9 von 12

SOP ELA-013, Version 01 04.10.2019	Quantitative Bestimmung von Kohlenstoff und Schwefel in Metallen, Metalloxiden und anorganischen Matrices	W
SOP ELA-016, Version 01 04.10.2019	Quantitative Bestimmung von Wasserstoff-, Stickstoff- und Sauerstoff in Metallen, Metalloxiden und anorganischen Matrices	W

1.15 Untersuchungen mittels Röntgenbeugung (RBA) zur Charakterisierung und Phasenbestimmung von anorganischen und organischen Materialien **

AN-SOP 0637 Method 53, Version 1 (EN) 17.10.2018	Characterisation of (API) using X-ray powder diffraction Crystallinity detection of (API) in 20 mg and 30 mg tablets	W
AN-SOP 0637 Method 55, Version 2 (EN) 29.08.2019	Characterisation of (API) using X-ray powder diffraction Determination of crystal modification of the active pharmaceutical ingredient by X-ray Powder Diffraction	W
AN-SOP 0637 Method 56, Version 1 (EN) 03.09.2019	Characterisation of (API) using X-ray powder diffraction Determination of crystal modification of the (API) in 100 mg, 200 mg and 300 mg tablets by X-ray Powder Diffraction	W
SOP 0637 Method 57, Version 2 29.03.2019	Characterisation of (API) using X-ray powder diffraction Determination of crystal modification of and detection of Forms II and III contaminants in Form I by X-ray Powder Diffraction	W
AN-SOP 0637 Methode 44, Version 01 17.01.2018	Röntgenweitwinkelbeugung zur Charakterisierung der Morphologie von Wirkstoffen Quantitative Bestimmung der Phasenzusammensetzung von (Produktname) gemäß ASTM F2024-10	W
SOP ROE-045, Version 01 28.10.2019	Quantitativer Nachweis von kristallinen Anteilen in amorphen Kieselsäuren mittels XRD nach Anreicherung	W

1.16 Bestimmung thermischer Eigenschaften von anorganischen und organischen Verbindungen mittels thermischer Analyse (dynamische Differenzkalorimetrie DSC, Thermogravimetrische Analyse TGA) **

SOP TA-002 Version 06	Dynamische Differenz-Kalorimetrie mit DSC Modulen von	W
08.02.2018	Mettler Toledo	

Gültig ab: 26.01.2023 Ausstellungsdatum: 26.01.2023

Seite 10 von 12

W

Anlage zur Teil-Akkreditierungsurkunde D-PL-21594-04-01

SOP TA-028 Version 01 Dynamische Differenz-Kalorimetrie mit der W TM-DSC 204 F1 Phoenix 18.09.2008 **SOP TA-028** Dynamische Differenz Kalorimetrie mit der W Methode 001, Version 01 DSC 204 F1 von Netzsch 09.05.2014 Bestimmung des Schmelzpeaks von (Produktname) **SOP TA-028** Dynamische Differenz Kalorimetrie mit der W Methode 002, Version 02 DSC 204 F1 von Netzsch 12.07.2018 Schmelzpunktbestimmung an L-Lactid, TMX, D-Lactid, Glycolid und D,L-Lactid

1.17 Bestimmung der Partikelgrößenverteilung anorganischer und organischer Materialien mittels Laserbeugung, Lichtstreuung **

Bestimmung der Partikelgrößenverteilung mit

Methode 015, Version 03 05.06.2018	dem Coulter LS 13320 Partikelgrößenanalysator Bestimmung der Partikelgrößenverteilung von (Produktname)	vv
SOP KORN-050 Methode 017, Version 01 31.01.2013	Bestimmung der Partikelgrößenverteilung mit dem Coulter LS 13320 Partikelgrößenanalysator Bestimmung der Partikelgrößenverteilung von (Produktname)	W
SOP KORN-050 Methode 018, Version 01 12.12.2013	Bestimmung der Partikelgrößenverteilung mit dem Coulter LS 13320 Partikelgrößenanalysator Bestimmung der Partikelgrößenverteilung von (Produktname)	W
SOP KORN-054 Methode 001, Version 02 29.10.2018	Bestimmung der Partikelgrößenverteilung mit dem optischen Einzelpartikelzähler AccuSizer 780 SIS Bestimmung von partikulären Verunreinigungen an (Produktname)-Produkten	W

1.18 Bestimmung der Sorptionseigenschaften und des Porenvolumens von Feststoffen durch Sorption, Desorption von Prüfgasen **

SOP SOR-024 Determination of N2 sorption isotherms with the TRISTAR W
Method 022e, Version 01 sorption measuring instrument
Determination of the specific surface area of (product name) as per EP2.9.26

Gültig ab: 26.01.2023 Ausstellungsdatum: 26.01.2023

SOP KORN-050

Seite 11 von 12

SOP SOR-024 Bestimmung von N2-Sorptionsisothermen mit dem W Methode 016, Version 01 Sorptionsmessgerät TRISTAR 17.01.2014 Bestimmung der spezifischen Oberfläche von Magnesiumstearat nach USP 846 SOP SOR-024 W Bestimmung von N2-Sorptionsisothermen mit Methode 017, Version 01 dem Sorptionsmessgerät TRISTAR -05.08.2014 Bestimmung der spezifischen Oberfläche von Siliciumdioxid nach USP 846 SOP SOR-024 Bestimmung von N2-Sorptionsisothermen mit W Methode 018, Version 01 dem Sorptionsmessgerät TRISTAR -05.08.2014 Bestimmung der spezifischen Oberfläche von Siliciumdioxid nach USP 846 SOP SOR-024 W Bestimmung von N2-Sorptionsisothermen mit Methode 019, Version 01 dem Sorptionsmessgerät TRISTAR -Bestimmung der spezifischen Oberfläche von (API) nach 05.08.2014

1.19 Bestimmung von Konventionsparametern an organischen und anorganischen Substanzen mittels Gravimetrie **

USP 846

Ph.Eur. 0738 (10.0)

Substances soluble in hydrochloric acid

M

USP NF

Silicon Dioxide, Assay

M

JECFA FAO Monographs

Calcium Silicate: LOD, LOI

W

JECFA FAO Monographs

Silicon Dioxide Amorphous: LOD, LOI, Si-Assay

W

Verwendete Abkürzungen:

API Active Pharmaceutical Ingredient (Pharmazeutischer Wirkstoff)

DIN Deutsches Institut für Normung e.V.

EN Europäische Norm

IECInternational Electrotechnical CommissionISOInternational Standards OrganizationSOPStandardarbeitsanweisung (Hausmethode)

VIS visible

Gültig ab: 26.01.2023 Ausstellungsdatum: 26.01.2023

Seite 12 von 12